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Abstract
In this work we present a detailed study of the recently introduced �m,n basis for
three Coulomb particles. We show that the scattering and generalized Coulomb
problems as well as a �2 approach can be viewed as particular cases of this
basis. We derive a partial wave expansion for �m,n functions and analyse the
reduction to some of the precedent cases.

PACS number: 03.65.-f

1. Introduction

In the last years there has been intense activity in the study of the three-body Coulomb problem
(3BCP). Different kinds of approximation have been proposed to deal with both the continuum
and discrete spectra of the Hamiltonian for three charged particles. Based on the so-called C3
model [1, 2], some authors presented different approximated wavefunctions [3–5]. In the C3
model, the dynamics of the system is described by the product of three two-body Coulomb
problem solutions, that is to say, a product of three Kummer hypergeometric functions. This
function is an approximate separable solution of the 3BCP wave equation and hence some terms
that include the three-body dynamic are lost in the C3 model. However, the computation of
cross sections with this model shows a very good agreement for a variety of processes, such as
ion–atom ionization, (e, 2e) collisions and photoionization. One way to include the dynamical
correlation in the wavefunction is to introduce modifications to the relative momenta between
the particles and the Sommerfeld parameters. Alt and co-workers changed the C3 model by
including a coordinate-dependent relative momentum between the particles, and in this way
they obtain a wavefunction with the correct behaviour in all the asymptotic regions [3]. On
the other hand, Berakdar and Briggs introduced modifications in the Sommerfeld parameters
by replacing the charges of the particles by momenta and coordinate-dependent charges
respectively [4, 5].
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We have tackled the problem from another point of view, proposing a correlated
wavefunction called �2 [6, 7], based on physically sound approximations to the neglected
terms of the Hamiltonian in the C3 model. This approach was initially derived for two heavy
and one light particles and generalized to a system of two light and one heavy particles [8].
For the first case, the motion of the system of the heavy particles is described by a two-body
Coulomb wavefunction. The dynamic of the light particle in the field of the heavy ones is taken
into account by a non-separable Appell degenerate hypergeometric function of two variables
labeled �2 [7, 9].

The application to the calculation of different cross section for heavy-ion–atom collisions
shows that the correlation introduced by the �2 wavefunction is in some aspects improved in
comparison with other models based in the C3 one [10]. However, in the description of collision
processes where the target has an internal structure, the �2 model with an eikonal initial state
underestimates the electron emission region known as soft electrons. In this description the
effect of the passive electrons of the target is modelled by a simple Coulomb potential with
effective charge giving rise to the non-orthogonality between the initial and final target states.
The internal structure of the target has been taken into account by different approaches, and
requires a partial wave decomposition of the wavefunction [11, 12].

Recently, Gasaneo and Miraglia and co-workers [6,13] have shown that the �2 function is
a particular function of a more general basis. In this work we study the partial wave expansion
for this basis. In section 2 we state the problem and define the basis to be studied and some
limiting cases that can be obtained. In section 3 the general partial wave expansion is given,
while in section 3 we study the reduction of the general problem to some well known particular
cases. We draw some conclusions in section 4 and give a brief outlook. We have included in
the appendix some useful algebraic formulae.

2. The generalized Coulombian basis

The wavefunction C3 treats all Coulomb interactions on equal footing, and, as we said before,
can be written as a product of three two-body Coulomb functions. In the case of the continuum
spectra and incoming boundary conditions, we have

�C3 = �P W

3∏
j=1

F

[
iαj

1
, −ikj ξj

]
(1)

where the function F

[
a

b
, x

]
is the Kummer function [15]. Here, �P W are the plane

waves representing the asymptotically free motion of the particles without interactions. αj

(j = 1, 2, 3) are the Sommerfeld parameters and kj (rj ) is the relative momentum (position)
between particles i and k, i �= j �= k. For brevity we have omitted the normalization factors
of each Coulomb wave. The function �C3, equation (1), is written in the set of six parabolic
coordinates [16]

ξj = rj + k̂j · rj

ηj = rj − k̂j · rj j = 1, 2, 3.
(2)

In equation (1) the ηj coordinates are included in the plane wave:

�P W = exp

(
i
µ1

m1
k1

(ξ1 − η1)

2
+ i

µ2

m2
k2

(ξ2 − η2)

2
+ i

µ3

m3
k3

(ξ3 − η3)

2

)
(3)

the symbols mi and µi (i = 1, 2, 3) are the masses and the reduced masses of the particles
respectively.
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The function ��2 can be considered as an extension of the �C3 for the case of dealing
with a three-body system given by two heavy ions and one light particle. For instance, if 1 and
2 are ions, we can write for incoming boundary conditions

��2 = �P W F

[
iα3

1
, −ik3ξ3

]
�2

[
iα1, iα2

1
, −ik1ξ1, −ik2ξ2

]
. (4)

The hypergeometric function �2 has been extensively studied by Erdelyi [9]. For our purpose,
the most useful way to write it is as an expansion in terms of Kummer functions [14]:

�2

[
a, a′

b
, x, y

]
=

∞∑
m=0

AmxmymF

[
a + m

b + 2m
, x

]
F

[
a′ + m

b + 2m
, y

]
(5)

where

Am = (a)m

(
a′)

m

(b + m − 1)m (m)m m!
(6)

and (a)n are the Pochhammer symbols.
Based on this expansion, Gasaneo [6] and Miraglia et al [13] introduced a general

wavefunction with the form

� = �P W

∞∑
m,n=0

Am,n

∏3

j=1
�mj ,nj

(
aj , bj , ikj ξj , −ikj ηj

)
(7)

where

�m,n (ai, bi, x, y) = xmF

[
iαi + m

ai
, x

]
ynF

[
n

bi
, y

]
(8)

m = {m1, m2, m3} and n = {n1, n2, n3}. The coefficients Am,n and ai, bi are determined
by constraining � to satisfy different physical requirements such as Redmond ’s asymptotic
behaviour and Kato’s cusp conditions [13]. They have shown that in some cases the coefficients
a, b have the form, for example, a1 = 1 + 2m and b1 = 1 + 2n, that observed by the �2

model [6, 7]. For these cases, the function �m,n (ai, bi, x, y) can be associated with the two-
body Coulomb wavefunction where the magnetic number is different from zero.

Even when the function � is a good proposal for the three-body Coulomb problem, the
information about the dynamic of dressed charged centres can be considered only as effective
charges since this expansion still relies on the coulombic form of the interaction potentials.
The common way to deal with this problem is to obtain a partial wave expansion for the base
function �m,n (ai, bi, x, y). Once we have performed the transformation, it may be possible
to compare the basis function with that obtained as a solution of the static potential proposed
by Erskine [17]. In terms of a partial wave expansion for the �, alternative ways to fix the
coefficients Am,n can be implemented.

It is easy to see that each of the functions �m,n (ai, bi, ξ, η) can be considered a particular
case of the following general wave:

�m1,m2 (α, β) = ei k
2 ξ ei(

m1+m2
2 )φ (−ikξ)

m1
2 F

[
iα + m1

2
1 + m1

, −ikξ

]

× e−i k
2 η (ikη)

m2
2 F

[
iβ + m2

2
1 + m2

, ikη

]
(9)

−α + β = Zµ

k
. (10)

This function is an extension of the generalized Coulomb wavefunction. This means that the
coefficients α, β, m1 and m2 can be fixed in such a way as to lead us to different wavefunctions:
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(I) The scattering Coulomb wavefunction: m1 = m2 = 0

ψ±
s = ei k

2 (ξ−η)F

[
iα
1

, −ikξ

]
F

[
iβ
1

, ikη

]
. (11)

The incoming (outgoing) asymptotic behaviour results when β = 0 (α = 0) taking into
account the condition (10).

(II) The general Coulomb function: m1 = m2 = m

ψ±
C = ei k

2 (ξ−η)eimφ (−ikξ)
m
2 F

[
iα + m

2
1 + m

, −ikξ

]
(ikη)

m
2 F

[
iβ + m

2
1 + m

, ikη

]
. (12)

The asymptotic behaviour of ψ±
C is different from that given by ψ±

s . For r → ∞ and for
example β = 0, ψ−

C leads to

ψ−
C → eimφ

[
� (1 + m) � (1 + m)

�
(
1 + m

2 − iα
)

�
(
1 + m

2

)ei k
2 (ξ−η) (ikξ)−iα

+i
� (1 + m) � (1 + m)

�
(
iα + m

2

)
�

(
1 + m

2

) e−i k
2 (ξ+η)

kξ
(−ikξ)iα

−i
� (1 + m) � (1 + m)

�
(
1 + m

2 − iα
)

�
(

m
2

) ei k
2 (ξ+η)

kη
(ikξ)−iα

]
. (13)

In this equation we can recognize a plane wave and incoming and outgoing spherical
waves, all of them distorted by a logarithmic phase (ikξ)±iα similar to that observed in
the asymptotic form of ψ−

s . We can say that in this case, by similarity with the scattering
Coulomb problem with β = 0, the wavefunction has an incoming asymptotic behaviour.
The plane wave of equation (13) is similar to that of ψ−

s . Besides the ‘outgoing’ plane
wave, the ψ−

s presents an incoming spherical wave. Then, the ψ−
C adds an outgoing

spherical wave to the asymptotic ψ−
s . This means that the total outgoing probability flux

is given by the contributions of the plane and spherical outgoing waves. Also, it changes
in each of the planes associated with different values of the angle φ.

(III) The �2 case: β = m2 = 0 and m1 = 2m.

ψ−
�2

= ei k
2 (ξ−η)eimφ (−ikξ)m F

[
iα + m

1 + 2m
, −ikξ

]
. (14)

A function with this form appear in each of the orders of the sum that defines the three-
body �2 wavefunction given by equation (4). The asymptotic behaviour of ψ�2 is given
by

ψ�2 → eimφ

[
� (1 + 2m)

� (1 + m − iα)
ei k

2 (ξ−η) (ikξ)−iα +
� (1 + 2m)

� (iα + m)
e−i k

2 (ξ+η) (−ikξ)iα−1

]
. (15)

A comparative analysis between ψ−
�2

and ψ−
s shows that both functions have the same

asymptotic form, but the normalization and the scattering transition amplitudes are
different [18].

All these functions can be written in terms of the Coulomb spherical wavefunctions
defined by

〈r|k, l, m〉 = R−
k,lY

m
l (16)
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where the function R−
k,l represents the radial eigenfunction [19]:

R−
k,l = e−ikr (2kr)l F

[
iα + l + 1

2l + 2
, 2ikr

]
(17)

and Y m
l is the spherical harmonic of θ and φ [19, 20]. The normalization constant of the

function R−
k,l was not included in equation (17) and is given by

Nk,l =
√

2

π

k |� (l + 1 − iα)|
(2l + 2)!

e
π
2 α. (18)

A partial wave expansion of the general basis of equation (7) can be achieved by partial
wave decomposition of each of the factors �mj ,nj

(
aj , bj , xj , yj

)
. However, the function

�m1,m2 (α, β) is more general than the factors of the basis and then, in the next section we shall
look for an expression of �m1,m2 (α, β) in terms of the basis defined in equation (16).

3. The change of basis

The partial wave expansion of function �m1,m2 (α, β), equation (9), will look like

�m1,m2 (α, β) =
∞∑

l=0

l∑
m=−l

Cl,mRl,mY m
l (%) . (19)

First, we replace the Kummer functions in �m1,m2 (α, β) by its series expansion [15]. We also
write the parabolic coordinates in terms of the spherical coordinates (see [19]). After some
algebra we obtain

�m1,m2 (α, β) = (−1)
m1
2 e−ikr (ikr)

m1+m2
2

∞∑
p,q=0

(
1 − iα + m1

2

)
p

(
iβ + m2

2

)
q

p!q! (1 + m1)p (1 + m2)q

(ikr)p+q

× (1 + cos θ)
m1
2 +p (1 − cos θ)

m2
2 +q ei(

m1+m2
2 )φ. (20)

In this way we separate the angular part of the wavefunction. We can expand it in terms of
spherical harmonics as follows:

(1 + cos θ)
m1
2 +p (1 − cos θ)

m2
2 +q ei(

m1+m2
2 )φ =

∞∑
l=0

l∑
m=−l

ãl,m,q,pY m
l (21)

where the coefficients ãl,m1,m2,q,p are given by (see the appendix)

ãl,m,q,p = 2
m1+m2

2 +p+qal,m1,m2,q,p (22)

and al,m1,m2,q,p can be written in terms of the hypergeometric function 3F2 [22]:

al,m1,m2,p,q = 4π (−1)
3(m1+m2)

4 Nl,
m1+m2

2

�
(
q + 1 + m1+3m2

4

)
�

(
p + 1 + 3m1+m2

4

)
�

(
m1+m2

2 + 1
)

� (m1 + m2 + p + q + 2)

×3F2

[
q + 1 + m1+3m2

4 , m1+m2
2 − l, m1+m2

2 + l + 1
1 + m1+m2

2 , m1 + m2 + p + q + 2
, 1

]
(23)

that resembles the expression of Clebsch–Gordan coefficients in terms of hypergeometric
functions [23]. It is possible to find this equivalence; however, we have not found it useful for
our purposes.

This expansion leads us to write �m1,m2 (α, β) as a series in terms of angular momenta.
The magnetic quantum number m is fixed by the index m1+m2

2 that appears in the exponential



8536 G Gasaneo et al

of the equation (9). In this way, all the angular part of the �m1,m2 (α, β) is in the spherical
harmonic functions and we can rewrite it as

�m1,m2 (α, β) =
∞∑

l=0

∞∑
s=0

Cl,s,m1,m2Rk,sY
m1+m2

2
l (%) (24)

�m1,m2 (α, β) =
∞∑

l=0

Rl,m1,m2 Y
m1+m2

2
l (25)

where the function Rl,m1,m2

Rl,m1,m2 = (−1)
m1
2 e−ikr (2ikr)

m1+m2
2

∞∑
p,q=0

(
1 − iα + m1

2

)
p

(
iβ + m2

2

)
q

p!q! (1 + m1)p (1 + m2)q

(2ikr)p+q al,m1,m2,p,q

has all the dependence in the radial coordinate. The double series that appear in this equation
can be rewritten in a different and more convenient way. Using the relation [21]

∞∑
p,q

cp,qxp+q =
∞∑

q=0

q∑
p=0

cq−p,pxq (26)

one of the series can be re-summed to obtain

Rl,m1,m2 = e−ikr (2ikr)
m1+m2

2

∞∑
p=0

Al,m1,m2,p (2ikr)p (27)

where the coefficient Al,m1,m2,q is given by

Al,m1,m2,q = (−1)
m1
2

q∑
p=0

(
1 − iα + m1

2

)
q−p

(
iβ + m2

2

)
p

(q − p)!p! (1 + m1)q−p (1 + m2)p

al,m1,m2,q−p,p. (28)

A careful inspection of equation (27) shows that the radial function Rl,m1,m2 does not have
the form of R−

k,l , equation (17). The coefficients Al,m1,m2,q have a quite complicated form,
which cannot be easily related to the coefficient of the Kummer function of R−

k,l . To obtain
an expression of Rl,m1,m2 in terms of the radial Coulomb functions R−

k,l , we propose a series
expansion for Rl,m1,m2 in terms of R−

k,l+s

Rl,m1,m2 =
∞∑

s=0

Cl,m1,m2,sR
−
k,l+s (29)

and look for the coefficients Cl,m1,m2,s . To relate both Cl,m1,m2,s and Al,m1,m2,q , we replace the
series expansion for the Kummer function in equation (29) and we use the relation given by
equation (26), which allows us to express Rl,m1,m2 as a single series with the following form:

∞∑
s=0

Cl,m1,m2,sR
−
k,l+s = e−ikr (2ikr)l

∞∑
s=0

Bl,m1,m2,s (2ikr)s . (30)

We have introduced the coefficient Bl,m1,m2,s

Bl,m1,m2,s =
s∑

q=0

(iα + l + q + 1)s−q

(s − q)! (2 (l + q) + 2)s−q

Cl,m1,m2,q (31)

to work with a shorter notation and make the procedure to obtain Cl,m1,m2,s clear enough.
Now, the coefficient Cl,m1,m2,s can be related to Al,m1,m2,p by setting equal order to order

the right-hand side of equations (27) and (30), i.e.

(2ikr)l
∞∑

s=0

Bl,m1,m2,s (2ikr)s = (2ikr)
m1+m2

2

∞∑
q=0

Al,m1,m2,q (2ikr)q (32)
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where we have factored the exponential e−ikr . The equation (32) can be satisfied only if the
following condition is fulfilled:

l + s = m1 + m2

2
+ q (33)

and the coefficients Bl,m1,m2,s and Al,m1,m2,q are related as follows:

Bl,m1,m2,s ≡
s∑

q=0

(iα + l + q + 1)s−q

(s − q)! (2 (l + q) + 2)s−q

Cl,m1,m2,q = Al,m1,m2,l− m1+m2
2 +s . (34)

This equation defines Cl,m1,m2,s in terms of Al,m1,m2,q for each s. To obtain Cl,m1,m2,q we have
to invert the sum upon q in the last equation taking into account that equation (33) should be
fulfilled. Using the relations

s∑
q=0

dsqCq = As Cs = 1

dss

[
As −

s−1∑
q=0

dsqCq

]
s � 1

the series which appear in the equation (34) can be inverted taking into account that C0 = A0.
Thus, Cl,m1,m2,s reads

Cl,m1,m2,s = Al,m1,m2,l− m1+m2
2 +s −

s−1∑
q=0

(iα + l + q + 1)s−q

(s − q)! (2 (l + q) + 2)s−q

Cl,m1,m2,q (35)

for s � 1.
With the definition obtained for the coefficient Cl,m1,m2,s , we can finally write �m1,m2 (α, β)

in the following form:

�m1,m2 (α, β) =
∞∑

l=0

∞∑
s=0

Cl,m1,m2,se−ikr (2kr)l+s F

[
iα + l + s + 1
2 (l + s) + 2

, 2ikr

]
Y

m1+m2
2

l . (36)

In this way, we have written �m1,m2 (α, β) in terms of the spherical solution of the Coulomb
problem. In the next section, we shall study the particular cases discussed in the previous
section. To perform the analysis it will be convenient to introduce alternative expressions of
�m1,m2 (α, β) which result from using equation (26). Applying it to equation (36) we obtain

�m1,m2 (α, β) =
∞∑

l=0

e−ikr (2kr)l F

[
iα + l + 1

2l + 2
, 2ikr

] l∑
s=0

CS,m1,m2,l−sY
m1+m2

2
S (37)

or

�m1,m2 (α, β) =
∞∑

s=0

e−ikr (2kr)s F

[
iα + s + 1

2s + 2
, 2ikr

] s∑
l=0

Cs−l,m1,m2,lY
m1+m2

2
s−l . (38)

4. The particular cases

In this section we show that the basis element �m1,m2 (α, β) given by equation (36) reduces to
the well known partial wave series expansion for the scattering Coulomb cases. We shall give
expressions for the general Coulomb case and we shall also give some comments for the �2

case mentioned in section 2.
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4.1. The scattering Coulomb case

As we discussed before, the scattering Coulomb case results from �m1,m2 (α, β) by choosing
m1 = m2 = β = 0 (see equation (9)). Under this conditions the relation given by equation (33)
reduces to l + s = q. The indices l and q run from zero to ∞, and then s must be given by
q − s. Besides this condition, the coefficients Cl,0,0,s and Al,0,0,q should satisfy normalization
relations

Cl,0,0,0 = Al,0,0,l = 4πNl,0

� (1 − iα)

� (1 − iα + l)

� (1 − iα) � (2l + 2)
(39)

and then

Cl,0,0,s = Al,0,0,l+s −
s−1∑
q=0

(iα + l + q + 1)s−q

(s − q)! (2 (l + q) + 2)s−q

Cl,0,0,q . (40)

It is easy to see that the coefficients Cl,0,0,s contribute to the double series of equation (36) only
when s = 0. For s different from zero, Cl,0,0,s is given by

Cl,0,0,s = Al,0,0,l+s − (iα + l + 1)s

s! (2l + 2)s

Cl,0,0,0. (41)

We can verify that both terms of the right-hand side of the last equation add to zero except for
s = 0. The previous analysis allow us to write the following expression for the wavefunction
�0,0 (α, 0):

�0,0 (α, 0) = 1

� (1 − iα)

∞∑
l=0

(2l + 1)
� (1 − iα + l)

� (2l + 2)
e−ikr (2kr)l

×F

[
iα + l + 1

2l + 2
, 2ikr

]
Pl (cos θ) (42)

which is the well known partial wave expansion for the scattering Coulomb function, apart
from a normalization factor.

4.2. The general Coulomb function

As we showed in section 2, the general Coulomb wavefunction results for β = 0 and
m1 = m2 = m (see equations (9) and (12)). The study of this case can be performed using the
partial wave expansion of equation (37).

Note from equation (12) that the radial part of �m,m (α, 0) is given by R−
k,l , equation (17),

i.e. by the radial Coulomb eigenfunction. However, the angular part is given by the sum of
different angular eigenfunctions Y m

S . Nevertheless, this is just a consequence of the general
character of the equations (36)–(38). After replacing the constraints β = 0 and m1 = m2 = m

in equation (37), and analysing the obtained result we can see that it simplifies considerably. A
careful study of the coefficient Cs,m,m,l−s shows us that only for s = l is it different from zero,
and in this case it reduces to Cl,m,m,0 = Al,m,m,l−m. Then, the function �m,m (α, 0) becomes
the partial wave series expansion as intuitively expected:

�m,m (α, 0) =
∞∑

l=0

Al,m,m,l−m e−ikr (2kr)l F

[
iα + l + 1

2l + 2
, 2ikr

]
Y m

l (43)

that is, a series expansion over the whole spherical Coulomb base. �m,m (α, 0) results in a
series over all the possible values of l for a fixed value of m, similar to that obtained for the
scattering case.
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The case of the �2 function introduces a further complication. We recall that to reduce
the �m1,m2 (α, β) function to the �2 case we should set β = m2 = 0 and m1 = 2m. This
introduces an asymmetric behaviour in the m indexes and we have not obtained a simple enough
expression for the partial wave expansion of the �2 function.

5. Conclusions and outlook

The generalization of the two-body Coulomb wavefunction called �m1,m2 (α, β) has been
studied. The Coulomb scattering, the general Coulomb problem and the so-called �2 approach
were shown as limit cases of �m1,m2 (α, β). This function can be considered as a generalized
basis element for the expansion of three-body continuum wavefunctions.

We have proposed a partial wave expansion of these basis elements in terms of the spherical
solutions of the two-body Coulomb problem. The obtained functions are regular in the whole
coordinate space. We should note that the asymptotic behaviour described in section 2 is
preserved after the partial wave expansion of �m1,m2 (α, β).

We have also obtained some particular cases. When m1 = m2 = 0 and β = 0, the
�m1,m2 (α, β) base leads to the well known partial wave series expansion for the scattering
Coulomb problem. Besides, by setting m1 = m2 = m and β = 0, the �m,m (α, 0) function
represents a partial wave expansion of the two-body Coulomb problem with the magnetic
number different from zero. For this situation we have shown that only a series in the
angular momentum remains and that this is upon the expected spherical harmonic angular
eigenfunctions with the same magnetic number. The partial wave series expansion which
results when m1 = 2m and m2 = β = 0, which define the �2 limit, could not be cast in a
simple form.

The expansions obtained here can help us to understand the physical aspects of the
wavefunctions such as the �2 three-body wavefunction or the � one. The physical conditions
such as the Kato´s ones and the united atom are fundamental in the calculation of cross sections
for different atomic processes [25, 26]. A partial wave expansion can be useful to elucidate
how these constraints effectively contribute to the cross sections.

On the other hand, these expansions would enable us go beyond the effective charge
approximation in the computation of cross sections in atomic collisions. To this end we could
replace the Coulomb interaction potentials of the Hamiltonian by some model approximations
that take into account the effect of passive electrons in most of the atomic species. This kind of
potential has spherical symmetry and then the angular part of its solutions remains unaltered.
A partial wave expansion of the solution of these potentials is achieved simply by replacing
the radial part of the partial wave expansion. Furthermore, a partial wave series expansion for
the �, as described in the introduction, can be easily improved. The general solution of a static
potential with the magnetic number different from zero can be used as a sort of �m1,m2 (α, β)

base. The radial solution of this two-body potential can be numerically solved in general and
for some particular cases a closed-form solution can be found [27].

Appendix

In this appendix we shall obtain an expression for the coefficient ãl,m1,m2,q,p, equation (22),
of the expansion given by equation (21). After projecting the left-hand side of equation (21)
upon the Y m

l basis and integrating over θ and φ we obtain

ãl,m1,m2,q,p =
∫

d% (1 + cos θ)
m1
2 +p (1 − cos θ)

m2
2 +q ei(

m1+m2
2 )φ

(
Y m

l

)∗
(44)
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that, after performing the integral in the angle φ and in terms of the associated Legendre
functions results in

ãl,m1,m2,q,p = (−1)
m1+m2

2 (2π) Nl,
m1+m2

2

∫ 1

−1
dx (1 + x)

m1
2 +p (1 − x)

m2
2 +q P

− m1+m2
2

l (x) (45)

where the change of variables x = cos θ have been made. The constant Nl,
m1+m2

2
is given by

Nl,
m1+m2

2
= (−1)

m1+m2
2

[
(2l + 1)

4π

(
l − m1+m2

2

)
!(

l + m1+m2
2

)
!

] 1
2

. (46)

Now, using the relation [22],

P m
l (x) = � (l + m + 1)

� (l − m + 1)
P −m

l (x) m ∈ integer (47)

we can rewrite ãl,m1,m2,q,p as follows:

ãl,m1,m2,q,p = (−1)
m1+m2

2 (2π) Nl,
m1+m2

2

�
(
l − m1+m2

2 + 1
)

�
(
l + m1+m2

2 + 1
)

×
∫ 1

−1
dx (1 + x)

m1
2 +p (1 − x)

m2
2 +q P

m1+m2
2

l (x) . (48)

The integral that appears in the last equation is of the kind

J =
∫ 1

−1
(1 + x)α−1 (1 − x)β−1 P µ

ν (x) dx. (49)

The result of this integral is incorrectly quoted in [24]. However, it can be performed
straightforwardly using the Gauss representation for the P µ

ν (x), valid for µ = 0, 1, 2 . . . :

P µ
ν (x) = (−1)

µ

2
� (ν + µ + 1)

µ!� (ν − µ + 1)
2−µ (1 + x)

µ

2 (1 − x)
µ

2 F

[
1 + µ + ν µ − ν

1 + µ
,

1 − x

2

]
(50)

where the function F

[
a b

c
, z

]
represents the Gauss hypergeometric function. Replacing

equation (50) in equation (49) we obtain

J = (−1)
µ

2
� (ν + µ + 1)

µ!� (ν − µ + 1)
2−µ

×
∫ 1

−1
(1 + x)α+ µ

2 −1 (1 − x)β+ µ

2 −1 F

[
1 + µ + ν µ − ν

1 + µ
,

1 − x

2

]
dx. (51)

Introducing the change of variable u = (1−x)

2 , J results as

J = (−1)
µ

2
2α+β−1� (ν + µ + 1)

� (µ + 1) � (ν − µ + 1)

×
∫ 1

0
(1 − u)α+ µ

2 −1 uβ+ µ

2 −1F

[
1 + µ + ν µ − ν

1 + µ
, u

]
du. (52)

The integral that appears in the last equation can be performed [24], and then we finally obtain

J = (−1)
µ

2 2α+β−1 � (ν + µ + 1) �
(
β + µ

2

)
�

(
α + µ

2

)
� (µ + 1) � (ν − µ + 1) � (α + β + µ)

×F

[
β + µ

2 µ − ν µ + ν + 1

1 + µ α + β + µ
, 1

]
. (53)
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The function F

[
a b c

d f
, z

]
represents the generalized hypergeometric function [22].

With the obtained result for J we can finally write an expression for the integral of the
equation (48); choosing

α = m1

2
+ p + 1 β = m2

2
+ q + 1 (54)

ν = l µ = m1 + m2

2
(55)

we obtain

J = (−1)
m1+m2

4 2
m1+m2

2 +p+q+1

×�
(
l + m1+m2

2 + 1
)

�
(

m2
2 + q + 1 + m1+m2

4

)
�

(
m1
2 + p + 1 + m1+m2

4

)
�

(
m1+m2

2 + 1
)

�
(
l − m1+m2

2 + 1
)

� (m1 + m2 + p + q + 2)

×F

[
m2
2 + q + 1 +

m1+m2
2
2

m1+m2
2 − l m1+m2

2 + l + 1
1 + m1+m2

2
m1
2 + p + 1 + m2

2 + q + 1 + m1+m2
2

, 1

]
. (56)

Finally the coefficient ãl,m1,m2,q,p can be written as

ãl,m1,m2,q,p = π (−1)
3(m1+m2)

4 2
m1+m2

2 +p+q+2Nl,
m1+m2

2

× �
(
q + 1 + m1+3m2

4

)
�

(
p + 1 + 3m1+m2

4

)
�

(
m1+m2

2 + 1
)

� (m1 + m2 + p + q + 2)

×F

[
q + 1 + m1+3m2

4
m1+m2

2 − l m1+m2
2 + l + 1

1 + m1+m2
2 m1 + m2 + p + q + 2

, 1

]
. (57)
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